The small inductive dimension of subsets of Alexandroff spaces
نویسندگان
چکیده
منابع مشابه
Small Inductive Dimension of Topological Spaces
For simplicity, we adopt the following rules: T , T1, T2 denote topological spaces, A, B denote subsets of T , F denotes a subset of T A, G, G1, G2 denote families of subsets of T , U , W denote open subsets of T A, p denotes a point of T A, n denotes a natural number, and I denotes an integer. One can prove the following propositions: (1) Fr(B ∩A) ⊆ FrB ∩A. (2) T is a T4 space if and only if f...
متن کاملThe Alexandroff Dimension of Digital Quotients of Euclidean Spaces
Alexandroff T0-spaces have been studied as topological models of the supports of digital images and as discrete models of continuous spaces in theoretical physics. Recently, research has been focused on the dimension of such spaces. Here we study the small inductive dimension of the digital space X (W) constructed in [15] as a minimal open quotient of a fenestrationW ofRn . There are fenestrati...
متن کاملSmall Inductive Dimension of Topological Spaces. Part II
In this paper n denotes a natural number, X denotes a set, and F1, G1 denote families of subsets of X. Let us consider X, F1. We say that F1 is finite-order if and only if: (Def. 1) There exists n such that for every G1 such that G1 ⊆ F1 and n ∈ CardG1 holds ⋂ G1 is empty. Let us consider X. Observe that there exists a family of subsets of X which is finite-order and every family of subsets of ...
متن کاملCores of Alexandroff Spaces
Following Kukie la, we show how to generalize some results from May’s book [4] concerning cores of finite spaces to cores of Alexandroff spaces. It turns out that finite space methods can be extended under certain local finiteness assumptions; in particular, every bounded-paths space or countable finite-paths space has a core, and two bounded-paths spaces or countable finite-paths spaces are ho...
متن کاملAN INDUCTIVE FUZZY DIMENSION
Using a system of axioms among with a modified definition of boundary on the basis of the intuitionistic fuzzy sets, we formulate an inductive structure for the dimension of fuzzy spaces which has been defined by Coker. This new definition of boundary allows to characterize an intuitionistic fuzzy clopen set as a set with zero boundary. Also, some critical properties and applications are establ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2016
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1611007c